Infinite Combinatorial Issues Raised by Lifting Problems in Universal Algebra

نویسنده

  • Friedrich Wehrung
چکیده

The critical point between varieties A and B of algebras is defined as the least cardinality of the semilattice of compact congruences of a member of A but of no member of B, if it exists. The study of critical points gives rise to a whole array of problems, often involving lifting problems of either diagrams or objects, with respect to functors. These, in turn, involve problems that belong to infinite combinatorics. We survey some of the combinatorial problems and results thus encountered. The corresponding problematic is articulated around the notion of a k-ladder (for proving that a critical point is large), large free set theorems and the classical notation (κ, r, λ) → m (for proving that a critical point is small). In the middle, we find λ-lifters of posets and the relation (κ,<λ) ; P , for infinite cardinals κ and λ and a poset P .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Factorial Algebraic Group Actions and Categorical Quotients

Given an action of an affine algebraic group with only trivial characters on a factorial variety, we ask for categorical quotients. We characterize existence in the category of algebraic varieties. Moreover, allowing constructible sets as quotients, we obtain a more general existence result, which, for example, settles the case of a finitely generated algebra of invariants. As an application, w...

متن کامل

A Combinatorial Approach to Quantification of Lie Algebras

We propose a notion of a quantum universal enveloping algebra for an arbitrary Lie algebra defined by generators and relations which is based on the quantum Lie operation concept. This enveloping algebra has a PBW basis that admits the Kashiwara crystalization. We describe all skew primitive elements of the quantum universal enveloping algebra for the classical nilpotent algebras of the infinit...

متن کامل

A Combinatorial Approach to the Quantification of Lie Algebras

We propose a notion of a quantum universal enveloping algebra for any Lie algebra defined by generators and relations which is based on the quantum Lie operation concept. This enveloping algebra has a PBW basis that admits a monomial crystallization by means of the Kashiwara idea. We describe all skew primitive elements of the quantum universal enveloping algebras for the classical nilpotent al...

متن کامل

Invariants of Legendrian Knots and Coherent Orientations

We provide a translation between Chekanov’s combinatorial theory for invariants of Legendrian knots in the standard contact R and a relative version of Eliashberg and Hofer’s contact homology. We use this translation to transport the idea of “coherent orientations” from the contact homology world to Chekanov’s combinatorial setting. As a result, we obtain a lifting of Chekanov’s differential gr...

متن کامل

Completely continuous Banach algebras

 For a Banach algebra $fA$, we introduce ~$c.c(fA)$, the set of all $phiin fA^*$ such that $theta_phi:fAto  fA^*$ is a completely continuous operator, where $theta_phi$ is defined by $theta_phi(a)=acdotphi$~~ for all $ain fA$. We call $fA$, a completely continuous Banach algebra if $c.c(fA)=fA^*$. We give some examples of completely continuous Banach algebras and a sufficient condition for an o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Order

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2012